Eccentric contractions disrupt FKBP12 content in mouse skeletal muscle
نویسندگان
چکیده
Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from impaired voltage-gated sarcoplasmic reticulum (SR) Ca(2+) release. FKBP12 is a 12-kD immunophilin known to bind to the SR Ca(2+) release channel (ryanodine receptor, RyR1) and plays an important role in excitation-contraction coupling. To assess the effects of eccentric contractions on FKBP12 content, we measured anterior crural muscle (tibialis anterior [TA], extensor digitorum longus [EDL], extensor hallucis longus muscles) strength and FKBP12 content in pellet and supernatant fractions after centrifugation via immunoblotting from mice before and after a single bout of either 150 eccentric or concentric contractions. There were no changes in peak isometric torque or FKBP12 content in TA muscles after concentric contractions. However, FKBP12 content was reduced in the pelleted fraction immediately after eccentric contractions, and increased in the soluble protein fraction 3 day after injury induction. FKBP12 content was correlated (P = 0.025; R(2) = 0.38) to strength deficits immediately after injury induction. In summary, eccentric contraction-induced muscle injury is associated with significant alterations in FKBP12 content after injury, and is correlated with changes in peak isometric torque.
منابع مشابه
FKBP12 deficiency reduces strength deficits after eccentric contraction-induced muscle injury.
Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from excitation-contraction uncoupling. FKBP12 is a 12-kDa binding protein known to bind to the skeletal muscle sarcoplasmic reticulum Ca2+ release channel [ryanodine receptor (RyR1)] and plays an important role in excitation-contraction coupling. To assess the effects of FKBP12 deficiency on muscle inj...
متن کاملUnaccustomed Eccentric Contractions Impair Plasma K+ Regulation in the Absence of Changes in Muscle Na+,K+-ATPase Content
The Na+,K+-ATPase (NKA) plays a fundamental role in the regulation of skeletal muscle membrane Na+ and K+ gradients, excitability and fatigue during repeated intense contractions. Many studies have investigated the effects of acute concentric exercise on K+ regulation and skeletal muscle NKA, but almost nothing is known about the effects of repeated eccentric contractions. We therefore investig...
متن کاملImmediate force loss after eccentric contractions is increased with L-NAME administration, a nitric oxide synthase inhibitor.
INTRODUCTION Nitric oxide (NO) signaling regulates many biological processes in skeletal muscle, wherein aberrant signaling contributes to myopathic conditions (e.g., Duchenne muscular dystrophy). NO has been shown to play a role in muscle regeneration after injury. However, less is known about its role during injury. In this study we aimed to determine whether NO synthase (NOS) inhibition exac...
متن کاملEffect of prior eccentric contractions on lactate/H+ transport in rat skeletal muscle.
The effect of prior eccentric contractions on skeletal muscle lactate/H+transport was investigated in rats. Lactate transport was measured in sarcolemmal giant vesicles obtained from soleus and red (RG) and white gastrocnemii (WG) muscles 2 days after intense eccentric contractions (ECC) and from the corresponding contralateral control (CON) muscles. The physiochemical buffer capacity was deter...
متن کاملتاثیر دما بر کاهش قدرت عضلانی ایزومتریک متعاقب تمرینات اکسنتریک در عضله گاستروکنمیوس داخلی ایزوله پرفیوز شده موش صحرائی
Background: The typical features of eccentric exercise-induced muscle damage are delayed-onset muscle soreness (DOMS) and prolonged loss of muscle strength. It has been shown that passive warmth is effective in reducing muscle injury. Due to the interaction of different systems in vivo, we used isolated perfused medial gastrocnemius skeletal muscle to study the direct effect of temperature on t...
متن کامل